
Tips and Tricks for Building
a Scalable Cloud Service

HackArizona 2015

Alex Landau
Amazon

Amazon
• Office in downtown Tempe near ASU (boooooooo)
• Most teams work for Marketplace (third party sellers)
• ~80 developers and growing fast
• We’re hiring.

The cunning plan…
• What? Why?
• Learn by doing
• Implications

What does it mean to be Scalable?
• Available

What does it mean to be Scalable?
• Available
• Really,
really fast

What does it mean to be Scalable?
• Available
• Really,
really fast
• Reliable

What does it mean to be Scalable?
• Available
• Really, really fast
• Reliable

• With lots and lots of traffic.

What is a lot of traffic?

• LA has ~374,000 cars per day on I-405  
(http://tinyurl.com/adlsuol)

• Reddit has ~25 million upvotes and downvotes per day
(http://www.reddit.com/about/)

• Dropbox hit 1 billion file uploads per day in 2013 (http://
tinyurl.com/kskhn28)

• Amazon’s S3 service peaks at 1.5 million requests per
second. (http://tinyurl.com/q6hnqvl)

http://tinyurl.com/adlsuol
http://tinyurl.com/adlsuol
http://tinyurl.com/adlsuol
http://www.reddit.com/about/
http://tinyurl.com/kskhn28
http://tinyurl.com/kskhn28
http://tinyurl.com/q6hnqvl
http://tinyurl.com/q6hnqvl

Why do
we care?

• User experience should be positive. These things suck.

So how do we build a service that
scales?

The basics – our little service
User

ID, name, GPS coords,
…

User was at location
at timestamp.ID, name, ….

Locatio
n

Checki
n

The basics – our little service

User
ID Name …

Location
ID Name GPS Coords …

Checkin
ID User ID Location ID Timestamp

The basics – our little service
• Record a checkin
• See a user’s current location
• See the checkins for a user across a time range
• See the checkins at a location for a user across a time range

Attempt 1 – Direct database access

Client
App SQL DB

Create rows for
checkin

Read rows to see
location/checkins

EC2
Instance

Problems

Attempt 2 – A service middleware

Client
App SQL DBWeb service

RecordCheckin

GetUserLocation,
GetCheckinsForUser,
GetCheckinsForLocation

EC2
Instance

EC2
Instance

Problems

Asynchronous IO

Attempt 3 – Asynchronous IO

Client
App SQL DBWeb service

EC2
Instance

EC2
Instance

Problems

Attempt 4 – Load balancing

Client
App

Web service

Web service

Web service

Web service

Reverse
Proxy/Load

Balancer SQL DB

EC2
Instances

EC2
Instance

Elastic Load
Balancer

Problems

Time

D
at

ab
as

e
W

ri
te

s

Problems

Client
App

Reverse
Proxy/Load

Balancer SQL DB

100
ms
write

Web service

Web service

Web service

Web service

Elastic Load
Balancer

EC2
Instances

EC2
Instance

Attempt 5 – A queue in the cloud

SQL DBClient
App

SNS/SQS
Reverse

Proxy/Load
Balancer

100 ms
write

10 ms write

Web service

Web service

Web service

Web service

Elastic Load
Balancer

EC2
Instances

EC2
Instance

A queue in the cloud

Time

D
at

ab
as

e
W

ri
te

s

Problems

Amazon DynamoDB
• NoSQL
• Fast, available, reliable
• Automatically scalable
• ↑ Throughput == ↑ $$$

Attempt 6 – A database in the cloud

Client
App

DynamoD
B

SNS/SQS
Reverse

Proxy/Load
Balancer

Web service

Web service

Web service

Web service

Elastic Load
Balancer

EC2
Instances

Even more improvements
• CloudSearch to speed up checkin reads
• Time-series database (Druid, InfluxDB, Prometheus) for

checkins
• Friends lists, push notifications, metrics and data
• Caching (ElastiCache)

Summary
We went from this…

Client
App SQL DB

Create rows for
checkin

Read rows to see
location/checkins

Summary
…to this.

Client
App

DynamoD
B

SNS/SQS
Reverse

Proxy/Load
Balancer

Web service

Web service

Web service

Web service

Elastic Load
Balancer

EC2
Instances

Summary
• Big wins.
• Linearly scalable.
• More money ! handle more traffic.
• Availability, performance, reliability.
• Managed services ≈≈ significant savings. (http://tinyurl.com/q29n6h3)

http://tinyurl.com/q29n6h3
http://tinyurl.com/q29n6h3

Implications
• Real world services are significantly more complex, but they

use the same techniques described here.
• Asynchronous IO
• Messages queues
• Managed cloud databases (both SQL and NoSQL) with service

guarantees
• Load balancing
• Caching

• You can make your entire infrastructure completely
horizontally scalable.

Questions?

